TY - JOUR
T1 - A conserved peptide sequence of the Plasmodium falciparum circumsporozoite protein and antipeptide antibodies inhibit Plasmodium berghei sprozoite invasion of Hep-G2 cells and protect immunized mice against P. berghei sporozoite challenge
AU - Chatterjee, S
AU - Wéry, M
AU - Sharma, P
AU - Chauhan, VS
N1 - FTX: Abonnement + Available in ITM print journal collection
PY - 1995
Y1 - 1995
N2 - Minutes after injection into the circulation, malaria sporozoites enter hepatocytes. The speed and specificity of the invasion process suggest that it is receptor mediated. The region II sequence of Plasmodium falciparum circumsporozoite (CS) protein includes a nonapeptide (WSPCSVTCG) which is highly conserved in all of the CS proteins sequenced to data, including the one from Plasmodium berghei. We have found that two peptides based on the P. falciparum region II sequence, P18 (EWSPCSVTCGNGIQVRIK) and P32 (IEQYLKKIKNS ISTEWSPCSVTCGNGIQVRIK), significantly inhibited P. berghei sporozoite invasion into Hep-G2 cells in vitro. This inhibition was enhanced if either peptide was preincubated with Hep-G2 cells prior to sporozoite invasion. We confirm that region II is a sporozoite ligand for the hepatocyte receptor; moreover, despite the few differences between P. falciparum and P. berghei region II sequences around the nonapeptide sequence (66% homology), the functional characteristics of the motif sequences are not affected. Since the conserved motifs represent a crucial sequence involved in Plasmodium sporozoite invasion of hepatocytes, antibodies to region II should inhibit sporozite invasion into hepatocytes. Indeed, we found that polyclonal antibodies generated to the P. falciparum-based peptide P32 inhibited P. berghei sporozoite invasion of Hep-G2 cells. Furthermore, inbred mice (C57BL/6) immunized with P32 were protected against a lethal challenge of P. berghei sporozoites. Our results suggest that the conserved region II of the CS protein contains crucial B- and T-cell epitopes, that such peptide sequences from the human malaria parasite P. falciparum can be screened in the P. berghei rodent model, and, finally, that region II can be considered useful as one of the components of a malaria vaccine.
AB - Minutes after injection into the circulation, malaria sporozoites enter hepatocytes. The speed and specificity of the invasion process suggest that it is receptor mediated. The region II sequence of Plasmodium falciparum circumsporozoite (CS) protein includes a nonapeptide (WSPCSVTCG) which is highly conserved in all of the CS proteins sequenced to data, including the one from Plasmodium berghei. We have found that two peptides based on the P. falciparum region II sequence, P18 (EWSPCSVTCGNGIQVRIK) and P32 (IEQYLKKIKNS ISTEWSPCSVTCGNGIQVRIK), significantly inhibited P. berghei sporozoite invasion into Hep-G2 cells in vitro. This inhibition was enhanced if either peptide was preincubated with Hep-G2 cells prior to sporozoite invasion. We confirm that region II is a sporozoite ligand for the hepatocyte receptor; moreover, despite the few differences between P. falciparum and P. berghei region II sequences around the nonapeptide sequence (66% homology), the functional characteristics of the motif sequences are not affected. Since the conserved motifs represent a crucial sequence involved in Plasmodium sporozoite invasion of hepatocytes, antibodies to region II should inhibit sporozite invasion into hepatocytes. Indeed, we found that polyclonal antibodies generated to the P. falciparum-based peptide P32 inhibited P. berghei sporozoite invasion of Hep-G2 cells. Furthermore, inbred mice (C57BL/6) immunized with P32 were protected against a lethal challenge of P. berghei sporozoites. Our results suggest that the conserved region II of the CS protein contains crucial B- and T-cell epitopes, that such peptide sequences from the human malaria parasite P. falciparum can be screened in the P. berghei rodent model, and, finally, that region II can be considered useful as one of the components of a malaria vaccine.
KW - B780-tropical-medicine
KW - Protozoology
KW - Plasmodium falciparum
KW - Peptides
KW - Vaccine
KW - Experimental
UR - https://www.webofscience.com/wos/woscc/full-record/WOS:A1995TB40000025
U2 - 10.1128/IAI.63.11.4375-4381.1995
DO - 10.1128/IAI.63.11.4375-4381.1995
M3 - A1: Web of Science-article
SN - 0019-9567
VL - 63
SP - 4375
EP - 4381
JO - Infection and Immunity
JF - Infection and Immunity
IS - 11
ER -