TY - JOUR
T1 - Access to emergency hospital care provided by the public sector in sub-Saharan Africa in 2015: a geocoded inventory and spatial analysis
AU - Ouma, Paul O
AU - Maina, Joseph
AU - Thuranira, Pamela N
AU - Macharia, Peter M
AU - Alegana, Victor A
AU - English, Mike
AU - Okiro, Emelda A
AU - Snow, Robert W
N1 - FTX; DOAJ; (CC BY 4.0); Copyright © 2018 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license. Published by Elsevier Ltd.. All rights reserved.
PY - 2018
Y1 - 2018
N2 - BACKGROUND: Timely access to emergency care can substantially reduce mortality. International benchmarks for access to emergency hospital care have been established to guide ambitions for universal health care by 2030. However, no Pan-African database of where hospitals are located exists; therefore, we aimed to complete a geocoded inventory of hospital services in Africa in relation to how populations might access these services in 2015, with focus on women of child bearing age.METHODS: We assembled a geocoded inventory of public hospitals across 48 countries and islands of sub-Saharan Africa, including Zanzibar, using data from various sources. We only included public hospitals with emergency services that were managed by governments at national or local levels and faith-based or non-governmental organisations. For hospital listings without geographical coordinates, we geocoded each facility using Microsoft Encarta (version 2009), Google Earth (version 7.3), Geonames, Fallingrain, OpenStreetMap, and other national digital gazetteers. We obtained estimates for total population and women of child bearing age (15-49 years) at a 1 km2 spatial resolution from the WorldPop database for 2015. Additionally, we assembled road network data from Google Map Maker Project and OpenStreetMap using ArcMap (version 10.5). We then combined the road network and the population locations to form a travel impedance surface. Subsequently, we formulated a cost distance algorithm based on the location of public hospitals and the travel impedance surface in AccessMod (version 5) to compute the proportion of populations living within a combined walking and motorised travel time of 2 h to emergency hospital services.FINDINGS: We consulted 100 databases from 48 sub-Saharan countries and islands, including Zanzibar, and identified 4908 public hospitals. 2701 hospitals had either full or partial information about their geographical coordinates. We estimated that 287 282 013 (29·0%) people and 64 495 526 (28·2%) women of child bearing age are located more than 2-h travel time from the nearest hospital. Marked differences were observed within and between countries, ranging from less than 25% of the population within 2-h travel time of a public hospital in South Sudan to more than 90% in Nigeria, Kenya, Cape Verde, Swaziland, South Africa, Burundi, Comoros, São Tomé and Príncipe, and Zanzibar. Only 16 countries reached the international benchmark of more than 80% of their populations living within a 2-h travel time of the nearest hospital.INTERPRETATION: Physical access to emergency hospital care provided by the public sector in Africa remains poor and varies substantially within and between countries. Innovative targeting of emergency care services is necessary to reduce these inequities. This study provides the first spatial census of public hospital services in Africa.FUNDING: Wellcome Trust and the UK Department for International Development.
AB - BACKGROUND: Timely access to emergency care can substantially reduce mortality. International benchmarks for access to emergency hospital care have been established to guide ambitions for universal health care by 2030. However, no Pan-African database of where hospitals are located exists; therefore, we aimed to complete a geocoded inventory of hospital services in Africa in relation to how populations might access these services in 2015, with focus on women of child bearing age.METHODS: We assembled a geocoded inventory of public hospitals across 48 countries and islands of sub-Saharan Africa, including Zanzibar, using data from various sources. We only included public hospitals with emergency services that were managed by governments at national or local levels and faith-based or non-governmental organisations. For hospital listings without geographical coordinates, we geocoded each facility using Microsoft Encarta (version 2009), Google Earth (version 7.3), Geonames, Fallingrain, OpenStreetMap, and other national digital gazetteers. We obtained estimates for total population and women of child bearing age (15-49 years) at a 1 km2 spatial resolution from the WorldPop database for 2015. Additionally, we assembled road network data from Google Map Maker Project and OpenStreetMap using ArcMap (version 10.5). We then combined the road network and the population locations to form a travel impedance surface. Subsequently, we formulated a cost distance algorithm based on the location of public hospitals and the travel impedance surface in AccessMod (version 5) to compute the proportion of populations living within a combined walking and motorised travel time of 2 h to emergency hospital services.FINDINGS: We consulted 100 databases from 48 sub-Saharan countries and islands, including Zanzibar, and identified 4908 public hospitals. 2701 hospitals had either full or partial information about their geographical coordinates. We estimated that 287 282 013 (29·0%) people and 64 495 526 (28·2%) women of child bearing age are located more than 2-h travel time from the nearest hospital. Marked differences were observed within and between countries, ranging from less than 25% of the population within 2-h travel time of a public hospital in South Sudan to more than 90% in Nigeria, Kenya, Cape Verde, Swaziland, South Africa, Burundi, Comoros, São Tomé and Príncipe, and Zanzibar. Only 16 countries reached the international benchmark of more than 80% of their populations living within a 2-h travel time of the nearest hospital.INTERPRETATION: Physical access to emergency hospital care provided by the public sector in Africa remains poor and varies substantially within and between countries. Innovative targeting of emergency care services is necessary to reduce these inequities. This study provides the first spatial census of public hospital services in Africa.FUNDING: Wellcome Trust and the UK Department for International Development.
KW - Adolescent
KW - Adult
KW - Africa South of the Sahara
KW - Emergency Service, Hospital
KW - Female
KW - Geographic Mapping
KW - Health Services Accessibility/statistics & numerical data
KW - Hospitals, Public
KW - Humans
KW - Male
KW - Middle Aged
KW - Spatial Analysis
KW - Time Factors
KW - Travel/statistics & numerical data
KW - Young Adult
U2 - 10.1016/S2214-109X(17)30488-6
DO - 10.1016/S2214-109X(17)30488-6
M3 - A1: Web of Science-article
C2 - 29396220
SN - 2214-109X
VL - 6
SP - e342-e350
JO - The Lancet Global health
JF - The Lancet Global health
IS - 3
ER -