TY - JOUR
T1 - Development and characterization of a solid dispersion film for the vaginal application of the anti-HIV microbicide UAMC01398
AU - Grammen, Carolien
AU - Van den Mooter, Guy
AU - Appeltans, Bernard
AU - Michiels, Johan
AU - Crucitti, Tania
AU - Ariën, Kevin
AU - Augustyns, Koen
AU - Augustijns, Patrick
AU - Brouwers, Joachim
N1 - Copyright © 2014 Elsevier B.V. All rights reserved.
PY - 2014
Y1 - 2014
N2 - The purpose of this work was to design and evaluate a vaginal film delivery system for UAMC01398, a novel non-nucleoside reverse transcriptase inhibitor currently under investigation for use as an anti-HIV microbicide. UAMC01398 (1mg) films consisting of hydroxypropylmethylcellulose (HPMC) and polyethylene glycol 400 (PEG400) in different ratios were prepared by solvent evaporation. Based on its flexibility, softness and translucent appearance, the 30% PEG400 and 70% HPMC containing film was selected for further assessment. The vaginal film formulation was fast-dissolving (<10 min in 1 mL of vaginal fluid simulant), stable up to at least one month and safe toward epithelial cells and lactobacilli. Furthermore, formulating UAMC01398 into the film dosage form did not influence its antiviral activity. Powder X-ray diffraction revealed the amorphous nature of the UAMC01398 film, resulting in enhanced compound permeation across the epithelial HEC-1A cell layer, presumably owing to the induction of supersaturation. The in vivo vaginal tissue uptake of UAMC01398 in rabbits, as measured by systemic concentrations, was increased compared to the previously established non-solubilizing gel (significant difference) and sulfobutyl ether-β-cyclodextrin (5%) containing gel. To conclude, we identified a film formulation suitable for the vaginal delivery of UAMC01398.
AB - The purpose of this work was to design and evaluate a vaginal film delivery system for UAMC01398, a novel non-nucleoside reverse transcriptase inhibitor currently under investigation for use as an anti-HIV microbicide. UAMC01398 (1mg) films consisting of hydroxypropylmethylcellulose (HPMC) and polyethylene glycol 400 (PEG400) in different ratios were prepared by solvent evaporation. Based on its flexibility, softness and translucent appearance, the 30% PEG400 and 70% HPMC containing film was selected for further assessment. The vaginal film formulation was fast-dissolving (<10 min in 1 mL of vaginal fluid simulant), stable up to at least one month and safe toward epithelial cells and lactobacilli. Furthermore, formulating UAMC01398 into the film dosage form did not influence its antiviral activity. Powder X-ray diffraction revealed the amorphous nature of the UAMC01398 film, resulting in enhanced compound permeation across the epithelial HEC-1A cell layer, presumably owing to the induction of supersaturation. The in vivo vaginal tissue uptake of UAMC01398 in rabbits, as measured by systemic concentrations, was increased compared to the previously established non-solubilizing gel (significant difference) and sulfobutyl ether-β-cyclodextrin (5%) containing gel. To conclude, we identified a film formulation suitable for the vaginal delivery of UAMC01398.
U2 - 10.1016/j.ijpharm.2014.08.054
DO - 10.1016/j.ijpharm.2014.08.054
M3 - A1: Web of Science-article
C2 - 25175729
SN - 0378-5173
VL - 475
SP - 238
EP - 244
JO - International Journal of Pharmaceutics
JF - International Journal of Pharmaceutics
IS - 1-2
ER -