TY - JOUR
T1 - Development and evaluation of an ITS1 "Touchdown" PCR for assessment of drug efficacy against animal African trypanosomosis
AU - Tran, Thao
AU - Napier, Grant
AU - Rowan, Tim
AU - Cordel, Claudia
AU - Labuschagne, Michel
AU - Delespaux, Vincent
AU - Van Reet, Nick
AU - Erasmus, Heidi
AU - Joubert, Annesca
AU - Büscher, Philippe
N1 - FTX
PY - 2014
Y1 - 2014
N2 - Animal African trypanosomoses (AAT) are caused by flagellated protozoa of the Trypanosoma genus and contribute to considerable losses in animal production in Africa, Latin America and South East Asia. Trypanosoma congolense is considered the economically most important species. Drug resistant T. congolense strains present a threat to the control of AAT and have triggered research into discovery of novel trypanocides. In vivo assessment of trypanocidal efficacy relies on monitoring of treated animals with microscopic parasite detection methods. Since these methods have poor sensitivity, follow-up for up to 100 days after treatment is recommended to increase the chance of detecting recurrent parasitaemia waves. Molecular techniques are more amendable to high throughput processing and are generally more sensitive than microscopic detection, thus bearing the potential of shortening the 100-day follow up period. The study presents a "Touchdown" PCR targeting the internal transcribed spacer 1 of the ribosomal DNA (ITS1 TD PCR) that enables detection and discrimination of different Trypanosoma taxa in a single run due to variations in PCR product sizes. The assay achieves analytical sensitivity of 10 parasites per ml of blood for detection of T. congolense savannah type and T. brucei, and 100 parasites per ml of blood for detection of T. vivax in infected mouse blood. The ITS1 TD PCR was evaluated on cattle experimentally infected with T. congolense during an investigational new veterinary trypanocide drug efficacy study. ITS1 TD PCR demonstrated comparable performance to microscopy in verifying trypanocide treatment success, in which parasite DNA became undetectable in cured animals within two days post-treatment. ITS1 TD PCR detected parasite recrudescence three days earlier than microscopy and had a higher positivity rate than microscopy (84.85% versus 57.58%) in 66 specimens of relapsing animals collected after treatments. Therefore, ITS1 TD PCR provides a useful tool in assessment of drug efficacy against T. congolense infection in cattle. As the assay bears the potential for detection of mixed infections, it may be applicable for drug efficacy studies and diagnostic discrimination of T. vivax and T. congolense against other pathogenic trypanosomes, including T. brucei, T. evansi and T. equiperdum.
AB - Animal African trypanosomoses (AAT) are caused by flagellated protozoa of the Trypanosoma genus and contribute to considerable losses in animal production in Africa, Latin America and South East Asia. Trypanosoma congolense is considered the economically most important species. Drug resistant T. congolense strains present a threat to the control of AAT and have triggered research into discovery of novel trypanocides. In vivo assessment of trypanocidal efficacy relies on monitoring of treated animals with microscopic parasite detection methods. Since these methods have poor sensitivity, follow-up for up to 100 days after treatment is recommended to increase the chance of detecting recurrent parasitaemia waves. Molecular techniques are more amendable to high throughput processing and are generally more sensitive than microscopic detection, thus bearing the potential of shortening the 100-day follow up period. The study presents a "Touchdown" PCR targeting the internal transcribed spacer 1 of the ribosomal DNA (ITS1 TD PCR) that enables detection and discrimination of different Trypanosoma taxa in a single run due to variations in PCR product sizes. The assay achieves analytical sensitivity of 10 parasites per ml of blood for detection of T. congolense savannah type and T. brucei, and 100 parasites per ml of blood for detection of T. vivax in infected mouse blood. The ITS1 TD PCR was evaluated on cattle experimentally infected with T. congolense during an investigational new veterinary trypanocide drug efficacy study. ITS1 TD PCR demonstrated comparable performance to microscopy in verifying trypanocide treatment success, in which parasite DNA became undetectable in cured animals within two days post-treatment. ITS1 TD PCR detected parasite recrudescence three days earlier than microscopy and had a higher positivity rate than microscopy (84.85% versus 57.58%) in 66 specimens of relapsing animals collected after treatments. Therefore, ITS1 TD PCR provides a useful tool in assessment of drug efficacy against T. congolense infection in cattle. As the assay bears the potential for detection of mixed infections, it may be applicable for drug efficacy studies and diagnostic discrimination of T. vivax and T. congolense against other pathogenic trypanosomes, including T. brucei, T. evansi and T. equiperdum.
KW - Animals
KW - Cattle
KW - Cattle Diseases
KW - DNA, Ribosomal Spacer
KW - Drug Resistance
KW - Mice
KW - Polymerase Chain Reaction
KW - Sensitivity and Specificity
KW - Trypanocidal Agents
KW - Trypanosomiasis, African
U2 - 10.1016/j.vetpar.2014.03.005
DO - 10.1016/j.vetpar.2014.03.005
M3 - A1: Web of Science-article
C2 - 24685024
SN - 0304-4017
VL - 202
SP - 164
EP - 170
JO - Veterinary Parasitology
JF - Veterinary Parasitology
IS - 3-4
ER -