Elucidation of cellular mechanisms involved in experimental paromomycin resistance in Leishmania donovani

Vasundhra Bhandari, Shyam Sundar, Jean Claude Dujardin, Poonam Salotra

Research output: Contribution to journalA1: Web of Science-articlepeer-review

Abstract

Leishmania donovani is the causative agent of the potentially fatal disease visceral leishmaniasis (VL). Chemotherapeutic options available to treat VL are limited and often face parasite resistance, inconsistent efficacy, and toxic side effects. Paromomycin (PMM) was recently introduced to treat VL as a monotherapy and in combination therapy. It is vital to understand the mechanisms of PMM resistance to safeguard the drug. In the present study, we utilized experimentally generated PMM-resistant L. donovani to elucidate the mechanisms of resistance and parasite biology. We found increased membrane fluidity accompanied by decreased intracellular drug accumulation in the PMM-resistant parasites. There were marked increases in gene expression of ATP-binding cassette (ABC) transporters (MDR1 and MRPA) and protein phosphatase 2A that evince increased drug efflux. Further, evaluation of parasite tolerance toward host leishmanicidal mechanisms revealed PMM-resistant parasites as being more tolerant to nitrosative stress at the promastigote and amastigote stages. The PMM-resistant parasites also predicted a better survival capacity, as indicated by resistance to complement-mediated lysis and increased stimulation of host interleukin-10 (IL-10) expression. The susceptibilities of PMM-resistant isolates to other antileishmanial agents (sodium antimony gluconate and miltefosine) remained unchanged. The data implicated the roles of altered membrane fluidity, decreased drug accumulation, increased expression of ABC transporters, and greater tolerance of parasites to host defense mechanisms in conferring PMM resistance in Leishmania.

Original languageEnglish
JournalAntimicrobial Agents and Chemotherapy
Volume58
Issue number5
Pages (from-to)2580-2585
Number of pages6
ISSN0066-4804
DOIs
Publication statusPublished - 2014

Fingerprint

Dive into the research topics of 'Elucidation of cellular mechanisms involved in experimental paromomycin resistance in Leishmania donovani'. Together they form a unique fingerprint.

Cite this