TY - JOUR
T1 - Spatiotemporal evolution of Ebola virus disease at sub-national level during the 2014 West Africa epidemic: model scrutiny and data meagreness
AU - Santermans, Eva
AU - Robesyn, Emmanuel
AU - Ganyani, Tapiwa
AU - Sudre, Bertrand
AU - Faes, Christel
AU - Quinten, Chantal
AU - Van Bortel, Wim
AU - Haber, Tom
AU - Kovac, Thomas
AU - Van Reeth, Frank
AU - Testa, Marco
AU - Hens, Niel
AU - Plachouras, Diamantis
N1 - FTX; DOAJ
PY - 2016
Y1 - 2016
N2 - BACKGROUND: The Ebola outbreak in West Africa has infected at least 27,443 individuals and killed 11,207, based on data until 24 June, 2015, released by the World Health Organization (WHO). This outbreak has been characterised by extensive geographic spread across the affected countries Guinea, Liberia and Sierra Leone, and by localized hotspots within these countries. The rapid recognition and quantitative assessment of localised areas of higher transmission can inform the optimal deployment of public health resources.METHODS: A variety of mathematical models have been used to estimate the evolution of this epidemic, and some have pointed out the importance of the spatial heterogeneity apparent from incidence maps. However, little is known about the district-level transmission. Given that many response decisions are taken at sub-national level, the current study aimed to investigate the spatial heterogeneity by using a different modelling framework, built on publicly available data at district level. Furthermore, we assessed whether this model could quantify the effect of intervention measures and provide predictions at a local level to guide public health action. We used a two-stage modelling approach: a) a flexible spatiotemporal growth model across all affected districts and b) a deterministic SEIR compartmental model per district whenever deemed appropriate.FINDINGS: Our estimates show substantial differences in the evolution of the outbreak in the various regions of Guinea, Liberia and Sierra Leone, illustrating the importance of monitoring the outbreak at district level. We also provide an estimate of the time-dependent district-specific effective reproduction number, as a quantitative measure to compare transmission between different districts and give input for informed decisions on control measures and resource allocation. Prediction and assessing the impact of control measures proved to be difficult without more accurate data. In conclusion, this study provides us a useful tool at district level for public health, and illustrates the importance of collecting and sharing data.
AB - BACKGROUND: The Ebola outbreak in West Africa has infected at least 27,443 individuals and killed 11,207, based on data until 24 June, 2015, released by the World Health Organization (WHO). This outbreak has been characterised by extensive geographic spread across the affected countries Guinea, Liberia and Sierra Leone, and by localized hotspots within these countries. The rapid recognition and quantitative assessment of localised areas of higher transmission can inform the optimal deployment of public health resources.METHODS: A variety of mathematical models have been used to estimate the evolution of this epidemic, and some have pointed out the importance of the spatial heterogeneity apparent from incidence maps. However, little is known about the district-level transmission. Given that many response decisions are taken at sub-national level, the current study aimed to investigate the spatial heterogeneity by using a different modelling framework, built on publicly available data at district level. Furthermore, we assessed whether this model could quantify the effect of intervention measures and provide predictions at a local level to guide public health action. We used a two-stage modelling approach: a) a flexible spatiotemporal growth model across all affected districts and b) a deterministic SEIR compartmental model per district whenever deemed appropriate.FINDINGS: Our estimates show substantial differences in the evolution of the outbreak in the various regions of Guinea, Liberia and Sierra Leone, illustrating the importance of monitoring the outbreak at district level. We also provide an estimate of the time-dependent district-specific effective reproduction number, as a quantitative measure to compare transmission between different districts and give input for informed decisions on control measures and resource allocation. Prediction and assessing the impact of control measures proved to be difficult without more accurate data. In conclusion, this study provides us a useful tool at district level for public health, and illustrates the importance of collecting and sharing data.
KW - Ebolavirus
KW - Epidemics
KW - Hemorrhagic Fever, Ebola
KW - Humans
KW - Models, Theoretical
KW - Journal Article
KW - Research Support, Non-U.S. Gov't
U2 - 10.1371/journal.pone.0147172
DO - 10.1371/journal.pone.0147172
M3 - A1: Web of Science-article
C2 - 26771513
SN - 1932-6203
VL - 11
JO - PLoS ONE
JF - PLoS ONE
IS - 1
M1 - e0147172
ER -