TY - JOUR
T1 - Toxicogenomics of the flame retardant tris (2-butoxyethyl) phosphate in HepG2 cells using RNA-seq
AU - Krivoshiev, Boris V
AU - Beemster, Gerrit T S
AU - Sprangers, Katrien
AU - Cuypers, Bart
AU - Laukens, Kris
AU - Blust, Ronny
AU - Husson, Steven J
N1 - FTX
PY - 2018
Y1 - 2018
N2 - Tris (2-butoxyethyl) phosphate (TBOEP) is a compound produced at high volume that is used as both a flame retardant and a plasticizer. It is persistent and bioaccumulative, yet little is known of its toxicological modes of action. Such insight may aid risk assessment in a weight-of-evidence approach supplementing current testing strategies. We used an RNA sequencing approach as an unbiased and sensitive tool to explore potential negative health effects of sub-cytotoxic concentrations of TBOEP on the transcriptome of the human liver hepatocellular carcinoma cell line, HepG2, with the lowest concentration used potentially holding relevance to human physiological levels. Over-representation and gene set enrichment analysis corresponded well and revealed that TBOEP treatments resulted in an upregulation of genes involved in protein and energy metabolism, along with DNA replication. Such increases in cell and macromolecule metabolism could explain the increase in mitochondrial activity at lower TBOEP concentrations. In addition, TBOEP affected a wide variety of biological processes, the most notable one being the general stress response, wound healing. Finally, TBOEP showed effects on steroid hormone biosynthesis and activation, regulation, and potentiation of immune responses, in agreement with other studies. As such, this study is the first study investigating genome-wide changes in gene transcription in response to TBOEP in human cells.
AB - Tris (2-butoxyethyl) phosphate (TBOEP) is a compound produced at high volume that is used as both a flame retardant and a plasticizer. It is persistent and bioaccumulative, yet little is known of its toxicological modes of action. Such insight may aid risk assessment in a weight-of-evidence approach supplementing current testing strategies. We used an RNA sequencing approach as an unbiased and sensitive tool to explore potential negative health effects of sub-cytotoxic concentrations of TBOEP on the transcriptome of the human liver hepatocellular carcinoma cell line, HepG2, with the lowest concentration used potentially holding relevance to human physiological levels. Over-representation and gene set enrichment analysis corresponded well and revealed that TBOEP treatments resulted in an upregulation of genes involved in protein and energy metabolism, along with DNA replication. Such increases in cell and macromolecule metabolism could explain the increase in mitochondrial activity at lower TBOEP concentrations. In addition, TBOEP affected a wide variety of biological processes, the most notable one being the general stress response, wound healing. Finally, TBOEP showed effects on steroid hormone biosynthesis and activation, regulation, and potentiation of immune responses, in agreement with other studies. As such, this study is the first study investigating genome-wide changes in gene transcription in response to TBOEP in human cells.
KW - Journal Article
U2 - 10.1016/j.tiv.2017.10.011
DO - 10.1016/j.tiv.2017.10.011
M3 - A1: Web of Science-article
C2 - 29024780
SN - 0887-2333
VL - 46
SP - 178
EP - 188
JO - Toxicology in Vitro
JF - Toxicology in Vitro
ER -